Given an array of n positive integers and a positive integer s, find the minimal length of a contiguous subarray of which the sum ≥ s. If there isn't one, return 0 instead.
Example:
Input: s = 7, nums = [2,3,1,2,4,3]
Output: 2Explanation: the subarray [4,3] has the minimal length under the problem constraint.Follow up:If you have figured out the O(n) solution, try coding another solution of which the time complexity is O(n log n).难度:medium
题目:
给定一个包含正整数的数组和一个正整数s,找出最小长度且元素相连的子数组使得其和大于s. 如果不存在这样的子数组,则返回0.思路:
滑动伸缩窗口。滑动窗口左边界为start index, 右边界为i, 窗口为[start index, i].Runtime: 2 ms, faster than 99.88% of Java online submissions for Minimum Size Subarray Sum.
class Solution { // O(2n) public int minSubArrayLen(int s, int[] nums) { int sum = 0, startIdx = 0; int minLen = nums.length + 1; for (int i = 0; i < nums.length; i++) { sum += nums[i]; if (sum >= s) { // shrink window while (startIdx <= i && sum >= s) { minLen = Math.min(minLen, i - startIdx + 1); sum -= nums[startIdx++]; } } } return minLen > nums.length ? 0 : minLen; }}